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Abstract 

Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and attention deficit hyperactivity 
disorder (ADHD), affect millions of children globally, posing immense clinical, social, and economic burdens. While early 
diagnosis remains critical for improving long-term outcomes, traditional assessment methods often suffer from 
subjectivity, late detection, and limited scalability. The advent of artificial intelligence (AI) has ushered in a new era of 
data-driven precision in mental health diagnostics, yet the opaque, “black-box” nature of most AI models has hindered 
their acceptance in high-stakes clinical settings. In response, explainable AI (XAI) has emerged as a crucial bridge 
between computational performance and clinical interpretability. This review critically explores the foundations, 
applications, and limitations of XAI in the early detection and diagnosis of NDDs. We examine core XAI paradigms—
ranging from SHAP and LIME to attention-based and saliency-driven techniques—and illustrate their capacity to 
illuminate AI decision-making in real-world diagnostic workflows. Case studies on the use of XAI in analyzing fMRI, EEG, 
and behavioral data for ASD and ADHD offer compelling evidence of its transformative potential. Yet, challenges persist, 
including the inconsistency of explanation reliability, trade-offs between model transparency and accuracy, and the 
risks posed by data bias, particularly in underrepresented pediatric populations. Looking forward, we chart future 
directions involving the fusion of XAI with digital biomarkers, federated learning for multicenter collaboration, and 
clinician-in-the-loop systems to ensure ethical, trustworthy, and context-sensitive deployment. By integrating 
interpretability into the very fabric of AI systems, this review advocates for a future where transparency and 
technological innovation coalesce to advance pediatric neuropsychiatric care. 

Keywords: Explainable AI; Neurodevelopmental Disorders; Autism Diagnosis; ADHD Clustering; Interpretable 
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1. Introduction

The diagnosis and management of neurodevelopmental disorders (NDDs) remain one of the most complex challenges 
in contemporary clinical neuroscience. These disorders, which include autism spectrum disorder (ASD), attention-
deficit/hyperactivity disorder (ADHD), intellectual disabilities, and specific learning disorders, typically emerge early 
in development and persist throughout life, significantly impairing social, academic, and occupational functioning [1]. 
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Timely and accurate diagnosis is essential for improving long-term outcomes, but conventional diagnostic approaches 
are often labor-intensive, subjective, and prone to variability across clinicians and cultures [1,2]. In recent years, 
artificial intelligence (AI) has demonstrated immense potential to transform how we approach the diagnosis of these 
disorders, particularly by leveraging vast and multidimensional datasets such as neuroimaging, electrophysiological 
signals, and behavioral assessments [3]. 

However, as AI continues to penetrate clinical decision-making, concerns about the transparency and interpretability 
of its models have become increasingly prominent. Clinicians, caregivers, and regulators are rightfully wary of relying 
on systems that cannot clearly explain how diagnostic conclusions are reached. This opacity, often referred to as the 
"black-box" problem, is a major barrier to the integration of AI into sensitive domains such as pediatric mental health 
[4]. To bridge this gap, researchers are now turning to Explainable Artificial Intelligence (XAI), a paradigm that seeks to 
make the decision-making processes of AI models more interpretable, reliable, and clinically acceptable [5]. This review 
explores the current landscape of AI in diagnosing neurodevelopmental disorders, critically examines the role of XAI in 
enhancing clinical transparency, and outlines emerging directions for research and application. 

1.1. The Burden of Neurodevelopmental Disorders 

Neurodevelopmental disorders affect a significant proportion of the global pediatric population and represent a major 
public health concern. According to the World Health Organization (WHO), an estimated 317 million children and 
adolescents were living with developmental disabilities in 2019, with the highest burdens found in low- and middle-
income countries (LMICs) [6]. These conditions disrupt various domains of development—including cognition, 
language, motor skills, and social interaction—and often require lifelong support and intervention. Early diagnosis is 
critical, as timely interventions have been shown to markedly improve outcomes in language acquisition, adaptive 
behavior, and academic success [7]. 

Despite growing awareness, underdiagnosis and delayed diagnosis remain pervasive challenges, particularly in 
resource-constrained settings. A lack of trained professionals, insufficient screening tools, and cultural stigmatization 
contribute to late identification of affected individuals. Moreover, diagnostic heterogeneity—manifested in the 
overlapping symptoms across different NDDs—makes the process inherently complex even in high-resource 
environments. This landscape underscores the urgent need for more objective, scalable, and data-driven diagnostic 
tools that can facilitate early detection and personalized care [8,9]. 

1.2. AI’s Rise in Early Detection and Diagnosis 

The application of artificial intelligence in medicine, particularly in the domain of neurodevelopmental diagnostics, has 
grown rapidly over the past decade. Machine learning (ML) algorithms, and more recently, deep learning architectures, 
have demonstrated high accuracy in identifying patterns in complex and high-dimensional datasets. These include 
structural and functional neuroimaging data (e.g., MRI, fMRI), electrophysiological recordings (e.g., EEG), and behavioral 
video or audio data—modalities that are rich in diagnostic potential but difficult for human experts to interpret 
consistently [10,11]. 

For example, studies have shown that AI can detect atypical neural connectivity patterns in fMRI scans of children with 
ASD, often before behavioral symptoms fully manifest [12]. Similarly, attention-based models have been used to classify 
ADHD subtypes using resting-state EEG data with promising results [13]. AI has also enabled scalable and non-invasive 
screening approaches using video analysis of eye gaze, facial expression, and motor behavior in young children [14]. 
These developments point to a future where AI can serve as a powerful adjunct to clinical judgment, aiding early 
detection and stratification of NDDs. 

However, despite these promising advances, widespread clinical adoption remains limited. A primary reason is the 
opaque nature of many AI systems, which often fail to provide understandable justifications for their decisions—making 
clinicians hesitant to rely on them for high-stakes diagnoses. This concern is particularly acute in pediatrics, where 
decisions affect not just the child, but also family dynamics, educational pathways, and therapeutic interventions. 

1.3. The Black-Box Problem in Clinical AI 

The “black-box” nature of many AI systems—especially those based on deep neural networks—presents a serious 
challenge to their clinical use. These models, while capable of achieving high predictive performance, do not readily 
reveal how input features contribute to their outputs. In clinical neuroscience, where decisions must be evidence-based, 
interpretable, and justifiable, this opacity undermines trust, safety, and accountability [15]. For instance, a clinician 
might hesitate to alter a child’s treatment plan based on an AI model that cannot explain why it flagged a particular 
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diagnosis. Moreover, regulatory bodies such as the U.S. Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) are increasingly emphasizing transparency and explainability as prerequisites for approving 
AI tools in healthcare. The ethical concerns are equally pressing: if a model makes a misclassification, clinicians and 
families must be able to understand the contributing factors and seek recourse or correction [16,17]. In the absence of 
explainability, there is a risk that AI could perpetuate biases embedded in training data, particularly affecting 
underrepresented populations[18]. 

In response to these challenges, the field of Explainable Artificial Intelligence (XAI) has emerged to bridge the gap 
between model complexity and human interpretability. Techniques such as SHAP (SHapley Additive exPlanations), 
LIME (Local Interpretable Model-agnostic Explanations), and attention visualization offer insights into which features 
the model considers most influential. By translating abstract model decisions into understandable reasoning, XAI has 
the potential to enhance trust, enable clinical oversight, and pave the way for ethically responsible AI deployment in 
neurodevelopmental diagnostics [19,20]. 

2. Overview of AI in Neurodevelopmental Diagnostics 

Artificial Intelligence (AI) has emerged as a transformative catalyst in the early detection and diagnosis of 
neurodevelopmental disorders (NDDs), promising to revolutionize how clinicians approach complex developmental 
conditions. NDDs, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and 
intellectual disabilities, are characterized by atypical brain development that manifests in cognitive, behavioral, and 
social impairments. Diagnosing these conditions early is critical for maximizing the benefits of therapeutic 
interventions, yet traditional diagnostic pathways are often time-consuming, subjective, and limited by human 
perceptual constraints. These limitations underscore the urgent need for objective, data-driven methods to aid early 
identification, particularly during sensitive developmental windows [21,22].  

In response, researchers and clinicians have increasingly turned to AI tools capable of analyzing vast, multimodal 
datasets—including neuroimaging, behavioral assessments, and genetic information—to uncover latent patterns 
predictive of NDDs. To provide a comprehensive snapshot of how AI is transforming neurodevelopmental diagnostics, 
we present Table 1, which summarizes the primary modalities, their data sources, key AI techniques, and their 
applications in diagnosing NDDs. This table serves as a roadmap for understanding the diverse ways AI is applied across 
neuroimaging, behavioral analysis, and digital phenotyping, highlighting the potential for both standalone and 
integrative approaches. Through the integration of machine learning (ML), deep learning (DL), and natural language 
processing (NLP), AI systems can model high-dimensional relationships between biological signals and clinical 
outcomes. This not only accelerates the diagnostic process but also facilitates personalized predictions about 
developmental trajectories and treatment responsiveness [23]. The current section explores how AI is reshaping 
neurodevelopmental diagnostics by focusing on key areas such as neuroimaging, behavioral and speech analysis, digital 
phenotyping, and multimodal integration. 

Table 1 AI Modalities and Applications in Diagnosing Neurodevelopmental Disorders 

Modality Data 
Source 

AI 
Techniques 

NDD 
Application
s 

Key Studies Advantages Challenges 

Structural 
MRI (sMRI) 

Brain 
morphology 
(e.g., 
cortical 
thickness, 
volume) 

Convolutiona
l Neural 
Networks 
(CNNs), 
Support 
Vector 
Machines 
(SVMs) 

ASD 
classification
, biomarker 
identification 
(e.g., 
precuneus, 
corpus 
callosum) 

Heinsfeld et al. 
[24], 
Sherkatghana
d et al. [25] 

High-resolution 
anatomical 
insights, non-
invasive 

High 
computational 
cost, 
preprocessing 
variability 

Functional 
MRI (fMRI) 

Resting-
state 
connectivity
, BOLD 
signals 

Graph Neural 
Networks 
(GNNs), 
Attention-
based Models 

ASD, ADHD 
diagnosis via 
connectivity 
patterns (e.g., 
posterior 

Khosla et al. 
[27], Ahmadi 
et al. [28] 

Captures dynamic 
brain activity 

Noisy data, 
complex 
interpretation 
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cingulate 
cortex) 

Diffusion 
Tensor 
Imaging 
(DTI) 

White 
matter tract 
integrity 
(e.g., 
fractional 
anisotropy) 

Random 
Forests, 
Autoencoder
s 

DLD, ASD 
detection via 
tract 
connectivity 
(e.g., arcuate 
fasciculus) 

Lou et al. [31], 
Zhang et al. 
[30] 

Reveals 
microstructural 
changes 

Limited by 
small sample 
sizes, 
preprocessing 
sensitivity 

EEG Brain 
electrical 
activity 
(e.g., 
alpha/theta 
rhythms) 

Recurrent 
Neural 
Networks 
(RNNs), 
SHAP-
enhanced 
Models 

ASD, ADHD 
classification 
via frequency 
bands 

Rogala et al. 
[98], 
Chakladar et 
al. [13] 

Cost-effective, 
high temporal 
resolution 

Susceptible to 
artifacts, 
requires 
expertise for 
interpretation 

Behavioral 
Analysis 

Video/audi
o of facial 
expressions, 
gaze, motor 
behavior 

CNNs, RNNs, 
Transformers 

Early ASD 
detection via 
gaze 
patterns, 
motor 
abnormalitie
s 

Perochon et al. 
[36], Leo et al. 
[40] 

Non-invasive, 
scalable for home 
use 

Cultural 
variability, 
data 
standardizatio
n issues 

Speech and 
Prosody 
Analysis 

Audio 
recordings 
(e.g., pitch, 
pausing, 
lexical 
diversity) 

Transformers
, SVMs with 
Mel-
frequency 
cepstral 
coefficients 

ASD, 
language 
disorder 
detection via 
prosodic 
features 

Bone et al. 
[42], Liu et al. 
[43] 

Scalable via 
mobile apps, non-
invasive 

Requires large 
annotated 
datasets, 
privacy 
concerns 

Digital 
Phenotypin
g 

Smartphone 
sensors, 
wearables 
(e.g., GPS, 
heart rate, 
sleep data) 

Deep 
Learning, 
Time-series 
Models 

ASD, ADHD 
monitoring 
via social, 
motor, and 
physiological 
patterns 

Saeb et al. 
[54], Goodwin 
et al. [59] 

Ecologically valid, 
continuous 
monitoring 

Privacy issues, 
device 
variability 

Multimodal 
Integration 

Combined 
sMRI, fMRI, 
EEG, 
behavioral, 
and sensor 
data 

Late-fusion 
Models, 
Transformers 

Enhanced 
ASD/ADHD 
detection via 
synergistic 
patterns 

Akhavan 
Aghdam et al. 
[32], Chen et 
al. [46] 

Comprehensive 
view of 
neurodevelopmen
t 

Data 
harmonization, 
computational 
complexity 

 

2.1. Neuroimaging-Based AI Models 

2.1.1. Structural MRI and AI 

Structural Magnetic Resonance Imaging (sMRI) is one of the most extensively used modalities in neuroscience, 
providing high-resolution insights into brain morphology. In the context of neurodevelopmental diagnostics, AI-driven 
analysis of sMRI data has become a prominent approach for identifying early neuroanatomical alterations associated 
with NDDs. Convolutional neural networks (CNNs), a subset of deep learning models, have shown remarkable success 
in differentiating between individuals with and without ASD by extracting spatial hierarchies of features from 
volumetric sMRI data. According to Heinsfeld et al. [24], a deep learning model trained on the ABIDE (Autism Brain 
Imaging Data Exchange) dataset was able to classify ASD with an accuracy of 70%, outperforming traditional ML 
algorithms in detecting subtle morphological differences in regions such as the precuneus and the inferior parietal 
lobule. 
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More recently, advances in explainable AI (XAI) have begun to bridge the gap between diagnostic accuracy and clinical 
interpretability. Models using saliency maps and layer-wise relevance propagation can now highlight specific brain 
regions contributing to classification decisions, thereby allowing clinicians to interpret the neurobiological basis of the 
algorithm’s output. A study by Sherkatghanad et al. [25] employed a 3D CNN architecture to analyze structural 
differences in ASD patients and identified significant features in the corpus callosum and cerebellum, regions previously 
implicated in ASD etiology. These findings not only validate the model’s predictions but also support its utility in 
revealing candidate biomarkers for further investigation. 

2.1.2. Functional MRI and AI 

Functional MRI (fMRI), which measures brain activity by detecting changes in blood oxygenation, offers complementary 
insights into neural connectivity and functional organization. AI algorithms have been particularly effective in analyzing 
resting-state fMRI (rs-fMRI) data, which captures spontaneous brain activity patterns that are altered in many NDDs 
[26]. Functional connectivity matrices derived from rs-fMRI are typically high-dimensional and noisy, making them 
ideal candidates for dimensionality reduction and pattern recognition via AI. For instance, Khosla et al. [27] developed 
a graph-based deep learning model that classified ASD from rs-fMRI data with over 75% accuracy by modeling inter-
regional connectivity as graph features. 

Furthermore, attention-based deep learning models have been introduced to highlight functional networks that are 
most predictive of disorder status. Recent work by Ahmadi et al. [28] utilized a temporal attention mechanism in their 
deep learning architecture to focus on dynamic changes in connectivity patterns across time, significantly improving 
ADHD diagnosis. Such models are invaluable not only for their predictive capability but also for advancing our 
understanding of dynamic functional connectivity and its role in developmental psychopathology. This paradigm shift—
from static to dynamic brain network modeling—could help identify transient but clinically relevant disruptions in 
neural coordination, especially in early stages of development. 

2.1.3. Diffusion Tensor Imaging and AI 

Diffusion Tensor Imaging (DTI), which measures the directionality and integrity of white matter tracts, has also been 
integrated with AI to detect microstructural changes indicative of NDDs. Alterations in white matter connectivity are 
hallmarks of disrupted neurodevelopment and often precede overt behavioral symptoms [29,30]. Traditional methods 
of analyzing DTI data—such as fractional anisotropy (FA) or mean diffusivity (MD)—are now being enhanced by 
machine learning classifiers, including support vector machines (SVMs) and ensemble tree methods. A study by Lou et 
al. [31] used DTI-based features with a random forest classifier to distinguish children with developmental language 
disorder (DLD), achieving an accuracy of 82% and revealing connectivity deficits in arcuate and superior longitudinal 
fasciculi. 

Beyond conventional classification, unsupervised learning approaches such as autoencoders are now being used to 
discover latent white matter phenotypes in mixed diagnostic populations. These techniques can cluster patients into 
subtypes based on neural profiles, thus paving the way for a transdiagnostic framework of NDDs. Moreover, explainable 
DTI-AI models are now enabling clinicians to visualize which tracts contribute most to classification, enhancing the 
models’ clinical utility and trustworthiness [26,30]. 

2.1.4. Multimodal Neuroimaging and AI Integration 

While single-modality analyses provide valuable insights, integrating multiple neuroimaging modalities has been shown 
to significantly enhance diagnostic performance. AI models designed for multimodal learning can simultaneously 
process structural, functional, and diffusion data, capturing a richer representation of the developing brain. For example, 
Akhavan Aghdam et al. [32] developed a multimodal deep learning model that combined sMRI and rs-fMRI data for early 
ASD detection, achieving an AUC of 0.87. Their model leveraged late-fusion techniques to combine embeddings from 
both modalities, revealing synergistic patterns of anatomical and functional abnormalities. 

Multimodal AI models also allow for longitudinal tracking of neurodevelopment, offering predictive insights into 
symptom progression and treatment outcomes. More recently, transformer-based architectures have been introduced 
to align temporally asynchronous imaging modalities, enabling end-to-end learning of developmental trajectories. 
Integrating neuroimaging data with clinical and behavioral features via AI represents a frontier in precision psychiatry, 
allowing for truly individualized diagnosis and care planning [22, 28]. However, such integration raises new challenges 
in data harmonization, model generalizability, and interpretability—issues that ongoing research is actively addressing 
through federated learning and cross-site validation protocols [31]. 
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2.2. Behavioral and Speech Analysis via AI 

The behavioral phenotype of neurodevelopmental disorders often precedes detectable structural brain abnormalities, 
making behavioral and speech analysis crucial for early diagnosis. Advances in artificial intelligence have enabled the 
extraction of granular, high-dimensional features from video, audio, and sensor data, revealing subtle behavioral and 
linguistic patterns that are imperceptible to the human eye or ear [33]. Such models have shown particular promise in 
pediatric populations, where non-invasive and low-burden diagnostic tools are critically needed. AI-based behavioral 
analytics can enhance early screening, stratify risk levels, and supplement clinician-administered diagnostic tools such 
as the Autism Diagnostic Observation Schedule (ADOS) [33,34]. This section explores four key areas where AI has 
significantly advanced behavioral and speech analysis: facial expression and gaze tracking, motor behavior and gesture 
analysis, speech and prosody modeling, and the integration of multimodal behavioral cues. 

2.2.1. Facial Expression and Gaze Tracking 

 

Figure 1 Distributions of app-derived behavioral variables, such as gaze fixation and facial expression intensity, for 
ASD and non-ASD groups, highlighting discriminative features for diagnosis. Adapted from Perochon et al. [36], with 

permission. Copyrighth, NatureMedicine 2023, licensed under a Creative Commons Attribution 4.0 International 
License 
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AI-powered computer vision systems have transformed facial expression and eye-gaze tracking into powerful 
diagnostic tools for neurodevelopmental disorders. Children with ASD, for example, often show reduced eye contact, 
atypical facial affect, and delays in the development of social reciprocity—behaviors that can now be quantitatively 
measured using AI. Deep convolutional networks trained on large datasets such as AffectNet or FER2013 can detect 
facial action units and microexpressions in real-time video, distinguishing between neurotypical and atypical emotional 
responses [35]. 

A notable study by Perochon et al. [36] used computer vision to track facial expressions and gaze patterns in infants and 
toddlers during structured play. Their model could detect early signs of ASD with a sensitivity of over 80%, well before 
a formal clinical diagnosis would typically occur. The system identified shorter gaze durations and lower frequency of 
shared attention episodes as significant predictors. Digital phenotyping via mobile apps enables the collection of rich 
behavioral data, such as gaze and facial expressions, for ASD diagnosis. Figure 1 illustrates the distributions of key app-
derived variables, including gaze fixation and facial expression intensity, which differentiate children with ASD from 
non-ASD peers. By visualizing these feature distributions, clinicians can better understand the behavioral markers 
driving AI predictions, enhancing diagnostic transparency. Similarly, Alvari et al. [37] leveraged AI models to classify 
emotional responses from facial micro-expressions in high-risk infants, finding distinct temporal patterns associated 
with later ASD outcomes. These results underscore the feasibility of using non-intrusive, AI-enhanced video analysis for 
preclinical risk assessment. 

2.2.2. Motor Behavior and Gesture Analysis 

Motor abnormalities—including delays in gross and fine motor skills, stereotypic movements, and poor postural 
control—are increasingly recognized as early indicators of NDDs [38]. Traditional motor assessments are often 
qualitative and subjective, but AI systems using pose estimation and time-series modeling have revolutionized how 
motor behavior is analyzed. By extracting joint trajectories from video or wearable sensors, machine learning 
algorithms can quantify gait, reach patterns, hand flapping, and other repetitive behaviors with high temporal precision 
[39]. 

For example, the work of Leo et al. [40] utilized an AI pipeline that combined OpenPose-based skeletal tracking with 
recurrent neural networks to identify atypical movement patterns in infants as young as 6 months. The model achieved 
classification accuracies of 85% for ASD vs. control groups and showed strong predictive power for future 
developmental delays. Similarly, Crippa et al. [41] applied a logistic regression model to motion capture data and were 
able to distinguish children with ASD from controls based on kinematic features like variability in trunk posture and 
hand trajectory smoothness. These approaches are particularly promising for use in home environments, where 
smartphone-recorded videos could replace clinical motion labs, reducing both cost and access barriers. 

2.2.3. Speech, Prosody, and Language Modeling 

Speech and language disruptions are hallmark features of many neurodevelopmental conditions, particularly ASD and 
language delay disorders. AI has enabled the fine-grained analysis of speech and prosody—including pitch variation, 
speech rate, pause duration, and vocal intensity—features that are challenging for clinicians to assess with consistency. 
Recent models use recurrent neural networks and transformers to analyze time-series speech signals, often achieving 
impressive diagnostic sensitivity and specificity. 

A landmark study by Bone et al. [42] demonstrated that prosodic abnormalities in children with ASD—such as flat 
intonation and abnormal pausing—could be accurately modeled using support vector machines fed with Mel-frequency 
cepstral coefficients (MFCCs). The system identified ASD with over 75% accuracy, indicating that acoustic features alone 
hold strong diagnostic value. More recently, Liu et al. [43] trained a transformer-based language model to parse semi-
structured narrative tasks from children aged 3–6 years, revealing that lexical diversity and syntactic complexity were 
significantly reduced in those later diagnosed with ASD or language impairment. These systems have the added benefit 
of being scalable and non-invasive, potentially allowing for speech-based screening tools deployable via mobile apps or 
telehealth platforms. 

2.2.4. Multimodal Behavioral Integration and AI Fusion Models 

One of the most promising directions in behavioral AI is the integration of multimodal data—combining visual, auditory, 
and sensor-derived features to build comprehensive behavioral profiles. Multimodal fusion models can capture cross-
domain interactions that are often missed in unimodal systems, such as the coordination between speech timing and 
facial affect or between gaze and gesture synchrony [44,45]. Fusion techniques range from early integration (where 
features are concatenated before modeling) to late fusion (where decisions from separate models are combined). 
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Advanced architectures like hybrid LSTM-CNN or attention-based fusion models are now widely used in this domain 
[45]. 

A study by Chen et al. [46] from the Autism Behavior Imaging project demonstrated that a fusion model combining facial 
expressions, vocal prosody, and head orientation could outperform any unimodal model in predicting ASD status, 
achieving 88% accuracy. Furthermore, this approach enhanced the interpretability of the AI output, allowing clinicians 
to visualize cross-modal inconsistencies—for instance, a smiling face paired with flat prosody—which are often 
clinically meaningful in ASD. Another emerging area is the use of self-supervised learning to reduce dependence on 
labeled data, enabling models to learn joint representations of behavior from raw videos without extensive human 
annotation [47]. These multimodal systems have the potential to become core components of next-generation 
diagnostic platforms, especially as they are increasingly integrated into mobile and home-based settings. However, 
challenges remain in terms of data standardization, real-time processing, and ensuring model robustness across cultural 
and demographic variability. Addressing these limitations will be critical for transitioning these tools from research 
prototypes to clinical applications. 

2.3. Digital Phenotyping and Passive Monitoring 

Digital phenotyping refers to the real-time, continuous quantification of human behavior and physiology using data 
collected passively from digital devices such as smartphones, wearables, and Internet-of-Things (IoT) systems [48,49]. 
In the context of neurodevelopmental disorders (NDDs), this paradigm offers transformative possibilities by capturing 
ecologically valid indicators of social interaction, motor activity, sleep, communication patterns, and emotional 
regulation in naturalistic settings [50,51]. Unlike episodic clinical evaluations, passive monitoring allows for 
longitudinal tracking of behavioral fluctuations, contextual responsiveness, and treatment effects, providing a high-
resolution digital mirror of individual functioning [49]. As mobile penetration increases globally, these methods also 
hold potential for bridging the diagnostic gap in under-resourced settings. 

2.3.1. Smartphone-Based Sensing of Social and Behavioral Patterns 

Smartphones, equipped with sensors such as GPS, accelerometers, microphones, and touchscreen logs, have emerged 
as powerful tools for detecting behavioral irregularities associated with NDDs [52,53]. AI algorithms can process call 
frequency, text complexity, screen usage, mobility patterns, and geospatial routines to infer social withdrawal, 
communication deficits, and restricted interests—common in conditions such as autism spectrum disorder (ASD) and 
attention-deficit/hyperactivity disorder (ADHD) [53]. 

Saeb et al. [54] demonstrated that passive data from GPS and phone usage strongly correlated with depressive symptom 
severity, with later studies extending these methods to developmental disorders [55]. Other research has shown passive 
smartphone data can predict related mental health outcomes, such as social anxiety, with up to 85% accuracy [56]. 

2.3.2. Wearable Devices for Sleep, Activity, and Physiological Monitoring 

Wearables such as smartwatches and fitness bands enable continuous measurement of physiological and behavioral 
states relevant to neurodevelopmental pathology. Features such as heart rate variability, galvanic skin response, step 
count, circadian rhythm regularity, and sleep architecture are now being captured with increasing accuracy [57]. These 
biosignals can serve as proxies for anxiety regulation, sensory sensitivities, motor restlessness, and attention variability. 

Research by Goodwin et al. [59] used data from Empatica E4 wristbands to model autonomic arousal and stereotypic 
behaviors in children with ASD. Their system, integrating electrodermal activity and motion data, predicted behavioral 
escalation events (e.g., meltdowns) with 84% accuracy. Similarly, Kim et al. [60] trained deep learning models on heart 
rate and activity data from wearable devices to classify children with ADHD versus neurotypical peers, achieving 78% 
accuracy. These results suggest that AI-enhanced wearables can serve not only as diagnostic adjuncts but also as 
dynamic trackers of treatment efficacy and environmental triggers, enabling personalized intervention timing. 

2.3.3. Voice and Communication Metadata from Passive Sensing 

Beyond active speech analysis, passive voice monitoring via ambient microphones or smartphone sensors provides a 
low-burden method to capture patterns in vocalization frequency, prosodic variability, and interaction latency [61]. 
These features reflect social engagement, verbal initiative, and affective state—core domains affected in NDDs. AI tools 
can analyze turn-taking behavior, duration of silence, and pitch contours to detect deviations from typical 
developmental trajectories. 
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A study by Oller et al. [62] utilized the LENA (Language Environment Analysis) system to capture day-long audio 
recordings in natural home settings. They found that children with ASD exhibited significantly lower conversational 
reciprocity and spontaneous vocalizations compared to their neurotypical peers. Machine learning classifiers trained 
on LENA features achieved over 90% accuracy in distinguishing high-risk toddlers from controls. This passive approach 
has since been adapted to smartphone-integrated apps, allowing for longitudinal vocal development tracking without 
the need for structured testing environments. 

2.3.4. Ecological Momentary Assessment (EMA) and Digital Diaries 

Digital phenotyping also includes EMA tools and digital self-report diaries that prompt caregivers or patients to report 
symptoms, contexts, and mood states in real time or at randomized intervals [63,64]. While not strictly passive, EMA 
minimizes recall bias and aligns with the temporal granularity of passive sensing. When combined with AI, EMA data 
enhances context interpretation, enabling joint modeling of subjective experiences and sensor-based observations. 

Lindhiem et al. [65] demonstrated that EMA reports of irritability and attention lapses, combined with passive activity 
and location data, improved the prediction of ADHD symptom severity by 15% compared to sensor data alone. 
Additionally, EMA responses have been linked with physiological data to detect stress patterns, creating a 
comprehensive bio-behavioral profile [66]. In the context of NDDs, where symptoms fluctuate based on environment 
and time of day, EMA can guide clinicians in tailoring intervention timing and monitoring therapy response [67]. 

Despite their promise, digital phenotyping approaches face key challenges including data privacy concerns, variability 
in device use across populations, and the need for regulatory frameworks that ensure clinical robustness and equity. 
However, the integration of these technologies into digital health ecosystems marks a major step toward scalable, 
personalized, and continuous neurodevelopmental monitoring. 

3. Foundations of Explainable AI (XAI) 

The rapid integration of artificial intelligence into critical fields such as medicine, finance, and policy-making has 
sparked a vital demand for transparency in machine learning decision-making. In healthcare, particularly in the context 
of neurodevelopmental disorders (NDDs), clinical experts must be able to understand how AI models derive conclusions 
from patient data, especially when such decisions could significantly affect diagnostic and therapeutic outcomes [68]. 
Explainable Artificial Intelligence (XAI) arises as a response to this need, referring to a set of techniques and principles 
that make the outcomes of AI models interpretable and understandable to humans [69]. This interpretability is not 
merely a technical luxury but a functional necessity for ethical compliance, legal accountability, and human trust in AI-
powered decisions. It aims to bridge the gap between model performance and human cognition, ensuring that clinicians, 
data scientists, and even patients can scrutinize the rationale behind AI predictions [68]. As AI models, especially deep 
neural networks, grow in complexity and opacity, the importance of robust, reliable explainability mechanisms becomes 
even more critical to mitigate risks such as bias, overfitting, or unpredictable behavior in real-world clinical settings. 

3.1. What Is Explainability in AI? 

Explainability in AI refers to the ability to make a model’s internal logic, decision pathways, and feature relevance 
comprehensible to human users. It enables stakeholders to trace back decisions to the features or data patterns that 
most influenced the outcome [70,71]. This concept is foundational to the development and application of AI systems in 
sensitive domains where decisions must be justified, audited, and trusted. In the medical sciences, for example, 
explainability allows clinicians to interrogate how and why a model has suggested a certain diagnosis or predicted a 
risk score, thereby facilitating informed decision-making rather than blind reliance on algorithmic output [70]. 
Researchers such as Chander et al. [72] emphasize that explainability not only aids in trust calibration and user 
engagement but also plays a crucial role in detecting model biases and vulnerabilities, making AI systems more robust 
and reliable in practice. Moreover, the demand for explainability is not merely philosophical but driven by pragmatic 
and regulatory pressures. Legal frameworks such as the General Data Protection Regulation (GDPR) in Europe and 
growing calls for algorithmic transparency in the United States demand that AI systems be auditable and interpretable 
[73]. In clinical neuroscience, explainable systems help identify whether a model's predictions align with 
pathophysiological understandings of disorders such as autism spectrum disorder (ASD) or attention deficit 
hyperactivity disorder (ADHD), ultimately enhancing the credibility and applicability of computational diagnostics [74]. 
Without explainability, these models become "black boxes" whose predictions, however accurate, may remain 
untrusted, unused, or even potentially dangerous if misinterpreted or applied inappropriately. Thus, explainability is 
not a peripheral add-on but a central pillar in the design and deployment of trustworthy and human-centric AI systems 
[74]. 
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3.2. Types of Explanations: Post Hoc vs. Intrinsic 

Explainability in AI systems can be classified into two broad paradigms: intrinsic and post hoc explanations. Intrinsic 
explanations refer to the transparency that is built into the model itself. These models are constructed with 
interpretability as a core feature, such that their decision-making process is directly observable from their structure. 
Linear regression models, for instance, offer coefficients that represent the exact contribution of each input feature to 
the predicted outcome, while decision trees utilize a sequence of human-readable decision rules to guide prediction 
[75]. These models are often favored in clinical contexts where clarity is paramount, even if their simplicity may 
sometimes come at the cost of predictive accuracy. Ribeiro et al. [76] observed that while such models may 
underperform compared to more complex architectures like deep learning networks, their interpretability can make 
them more suitable for certain high-stakes applications, including early childhood diagnostic assessments. 

In contrast, post hoc explanations are applied to models that are not intrinsically interpretable. These include deep 
neural networks, ensemble methods, and other complex architectures that, despite their predictive power, operate in a 
manner that is opaque to human observers [77]. Post hoc explanation techniques are developed to analyze these models 
after training, offering insights into which input features were most influential or how a particular prediction was made 
[77,78]. This paradigm allows researchers to extract human-understandable rationales from otherwise inscrutable 
algorithms, enabling the use of high-performance models in domains where interpretability is a prerequisite. However, 
post hoc techniques come with limitations. They may offer approximations rather than faithful representations of the 
model's internal reasoning, and they can sometimes yield explanations that are misleading or unstable. As explained by 
Lipton [79], this raises important questions about the epistemic value of such explanations and the extent to which they 
should be relied upon in sensitive contexts such as clinical decision-making. 

In the domain of neurodevelopmental disorders, where early detection may depend on subtle behavioral or 
neuroimaging markers, both intrinsic and post hoc models offer different advantages. Intrinsic models can support 
transparent clinical protocols, while post hoc techniques enable the use of sophisticated deep learning methods without 
entirely sacrificing interpretability [80,81]. Consequently, the current trajectory of XAI research involves not just the 
development of new explanation tools but also the careful selection and combination of explanatory approaches that 
balance interpretability with model performance, depending on the context of use and the stakes involved. 

3.3. Common XAI Techniques: SHAP, LIME, Grad-CAM, Attention Maps 

A growing toolkit of explanation techniques has emerged to operationalize XAI in practice, each with its own strengths, 
limitations, and ideal use cases. SHAP (SHapley Additive exPlanations) stands out as one of the most theoretically 
grounded methods, drawing from cooperative game theory to assign each feature a Shapley value that quantifies its 
contribution to the model’s output [82,83].  

Table 2 Common XAI Techniques in Neurodevelopmental Disorder Diagnostics 

XAI Technique Mechanism NDD Application Key Studies Strengths Limitations 

SHAP (Shapley 
Additive 
Explanations) 

Assigns feature 
importance 
based on game 
theory Shapley 
values 

Identifies key EEG 
frequency bands in 
ASD, ADHD feature 
attribution 

Lundberg & 
Lee [82], 
Rogala et al. 
[98] 

Model-
agnostic, 
consistent 
feature 
importance 

Computationally 
intensive, sensitive 
to input 
perturbations 

LIME (Local 
Interpretable 
Model-agnostic 
Explanations) 

Perturbs inputs 
to create local 
surrogate 
models 

Explains individual 
ASD risk scores from 
behavioral data 

Ribeiro et al. 
[76], Perochon 
et al. [36] 

Case-specific, 
intuitive for 
clinicians 

Local 
approximations 
may not reflect 
global model 
behavior 

Grad-CAM 
(Gradient-
weighted Class 
Activation 
Mapping) 

Uses gradients 
to highlight 
influential 
regions in 
visual inputs 

Visualizes brain 
regions (e.g., 
prefrontal cortex) in 
fMRI-based ASD 
diagnosis 

Lin et al. [97], 
Hussain & 
Shouno [84] 

Effective for 
imaging data, 
visually 
intuitive 

Limited to 
convolutional 
architectures, less 
effective for non-
visual data 
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Attention Maps Visualizes 
attention 
weights in 
transformer 
models 

Highlights temporal 
sequences in EEG or 
behavioral data for 
ADHD clustering 

Ahmadi et al. 
[28], Jacobson 
et al. [104] 

Intuitive for 
sequential 
data, aligns 
with temporal 
dynamics 

Can be unstable, 
requires validation 
for reliability 

Decision Trees Provides rule-
based decision 
paths 

Explains behavioral 
feature 
contributions (e.g., 
gaze, gestures) in 
ASD detection 

Perochon et al. 
[36], Arnett et 
al. [100] 

Highly 
interpretable, 
clinician-
friendly 

Limited to simpler 
models, may miss 
complex patterns 

Layer-wise 
Relevance 
Propagation 

Propagates 
relevance 
scores 
backward 
through neural 
layers 

Identifies critical 
brain regions in 
sMRI for ASD 
classification 

Sherkatghanad 
et al. [25] 

Fine-grained 
feature 
attribution 

Complex to 
implement, model-
specific 

This method is model-agnostic and ensures consistency in feature importance estimates across different models and 
inputs. Lundberg and Lee [82], who introduced SHAP, demonstrated its utility in medical diagnostics, showing that it 
could effectively explain black-box predictions of patient risk factors in a way that aligned with clinical intuition. In the 
context of neurodevelopmental disorders, SHAP has been applied to analyze complex models built on behavioral data 
or neuroimaging inputs, offering insight into which features—such as gaze fixation patterns or cortical thickness 
measures—most influence the model’s classification [82]. 

Another widely used technique is LIME (Local Interpretable Model-agnostic Explanations), which generates local 
approximations of the model’s behavior around a specific prediction. LIME works by perturbing the input features and 
observing the resulting changes in output, fitting an interpretable model—such as a linear regressor—to the 
neighborhood of the original instance [76,83]. This approach provides case-specific explanations, making it particularly 
useful for individual-level predictions, such as determining why a particular patient was flagged as high risk for ASD. 
Ribeiro et al. [76] illustrated that LIME could be instrumental in settings where clinicians must justify or interrogate 
single-instance model outputs, enhancing transparency without sacrificing model complexity. 

For models trained on visual data, such as neuroimaging scans or facial behavior videos, techniques like Grad-CAM 
(Gradient-weighted Class Activation Mapping) have become essential. Grad-CAM works by leveraging the gradients of 
the output layer with respect to the convolutional layers to produce heatmaps that highlight areas of the input image 
most influential to the prediction [84,85]. This has been especially impactful in studies using fMRI or EEG scans to 
classify neurodevelopmental conditions, where it is crucial to identify which brain regions the model is attending to. 
Similarly, attention maps derived from transformer-based architectures provide interpretability for models processing 
sequential data, such as time-series signals or language transcripts [86]. These maps show how much “attention” the 
model allocates to each input token or segment, offering a visual and quantitative insight into the temporal and 
contextual weighting mechanisms employed by the model. To elucidate the practical utility of XAI techniques in 
neurodevelopmental diagnostics, Table 2 provides a detailed comparison of common XAI methods, their mechanisms, 
applications in NDD contexts, and their strengths and limitations. This table underscores how these techniques enhance 
interpretability in complex AI models, facilitating their integration into clinical workflows. 

Collectively, these XAI techniques are enabling researchers and clinicians to peer into the inner workings of AI systems, 
converting complex predictive processes into understandable narratives. Their use in the context of 
neurodevelopmental disorders is growing, particularly as AI tools are increasingly deployed to analyze high-
dimensional, multimodal datasets. However, the use of these tools must be tempered by a critical understanding of their 
limitations, as even the most elegant explanations can mislead if they fail to faithfully represent the underlying model 
behavior. 

4. Applications of XAI in Neurodevelopmental Disorder Diagnostics 

The application of explainable AI (XAI) within the realm of neurodevelopmental disorder (NDD) diagnostics marks a 
significant turning point in computational medicine [87]. Historically, the diagnosis of conditions like autism spectrum 
disorder (ASD), attention deficit hyperactivity disorder (ADHD), and developmental language disorder has relied 
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heavily on clinical observation, caregiver reports, and time-consuming psychometric evaluations [87-89]. These 
methods, though valuable, are prone to subjectivity, inter-rater variability, and delays that can critically impact early 
intervention outcomes [88]. With the advent of machine learning, particularly deep learning models applied to 
neuroimaging, behavioral data, and multi-omics, significant improvements in predictive performance have emerged 
[90]. However, the opaque nature of these models has limited their direct integration into clinical practice. XAI fills this 
gap by translating complex model inferences into interpretable insights, thereby empowering clinicians with not only 
accurate but also transparent diagnostic tools. 

4.1. Enhancing Trust and Clinical Adoption 

One of the most direct impacts of XAI in the context of NDD diagnostics is the enhancement of clinician trust and the 
promotion of clinical adoption of AI tools. The adoption of AI-based systems in psychiatry and pediatric neurology 
remains relatively cautious, often hindered by skepticism regarding how these systems reach their conclusions. Studies 
such as those by Holzinger et al. [91] emphasize that interpretability is not only about technical explanation but also 
about aligning machine predictions with domain knowledge, which is essential for building trust among healthcare 
professionals. For instance, when an AI model identifies a child as being at high risk for ASD, clinicians are more likely 
to accept the recommendation if the model provides a transparent rationale, such as highlighting atypical eye-tracking 
patterns or reduced connectivity in specific brain regions known to be associated with ASD [92,93]. These explanations 
not only validate the model's prediction but also enhance the clinician's diagnostic confidence and willingness to use AI 
tools as complementary supports. 

Moreover, explainability aids in identifying edge cases where the model’s prediction might be unreliable. For example, 
Saporta et al. [94] demonstrated that XAI tools could reveal when an AI system's decision was based on spurious 
correlations, such as image artifacts or irrelevant demographic features. This ability to scrutinize and challenge the 
model's reasoning is crucial in ensuring safe deployment, especially in pediatric populations where ethical and legal 
standards are particularly stringent. In sum, XAI not only serves as a safeguard against algorithmic opacity but also as 
a bridge that connects advanced computational methods with the clinical intuition and accountability required in real-
world practice. 

4.2. Case Studies of XAI in Diagnosing Neurodevelopmental Disorders (NDDs) 

The integration of explainable artificial intelligence (XAI) into diagnostic pipelines for neurodevelopmental disorders 
(NDDs) has transitioned from theoretical exploration to practical implementation [74]. With the increasing availability 
of neuroimaging and behavioral data, researchers are leveraging XAI not only to enhance diagnostic accuracy but to 
illuminate the reasoning behind AI-generated predictions. This section explores three key domains where XAI has 
significantly impacted the diagnosis and characterization of NDDs: autism spectrum disorder (ASD), attention-
deficit/hyperactivity disorder (ADHD), and behavioral pattern analysis in children. Each domain highlights how 
explainability tools enable more transparent and clinically grounded decisions, helping bridge the gap between complex 
machine learning models and real-world healthcare needs. To consolidate the practical impact of XAI in NDD 
diagnostics, Table 3 presents a selection of case studies that demonstrate how specific XAI techniques have been applied 
to different data modalities for ASD, ADHD, and behavioral analysis. These examples highlight the clinical relevance and 
interpretability of XAI-driven insights, reinforcing their potential to transform diagnostic practices. 

Table 3 Case Studies of XAI Applications in NDD Diagnosis 

Study NDD Data Modality XAI 
Technique 

Key Findings Clinical 
Impact 

Reference 

Lin et al. 
(2022) 

ASD fMRI Grad-CAM Highlighted 
posterior 
cingulate and 
medial 
prefrontal cortex 
in ASD 
classification 

Validated 
neurobiological 
markers, 
enhanced 
clinician trust 

[97] 

Rogala et 
al. (2023) 

ASD EEG SHAP Identified 
alpha/theta 
rhythm 
abnormalities in 

Improved EEG-
based 
diagnostic 
precision, 

[98] 
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frontal/temporal 
lobes 

actionable for 
early screening 

Arnett et 
al. (2022) 

ADHD Neuropsychological 
Tests 

Decision 
Trees 

Clustered ADHD 
subtypes based 
on impulsivity 
and attention 
deficits 

Informed 
tailored 
treatment 
plans, reduced 
diagnostic 
subjectivity 

[100] 

Agoalikum 
et al. 
(2023) 

ADHD fMRI Attention 
Maps 

Highlighted 
dorsolateral 
prefrontal cortex 
in impulsive 
symptom 
prediction 

Clarified neural 
basis of ADHD 
subtypes, 
supported 
targeted 
interventions 

[102] 

Perochon 
et al. 
(2023) 

ASD Behavioral (Video) Decision 
Trees, 
SHAP 

Identified gaze 
and gesture 
deficits as key 
ASD predictors 

Enabled non-
invasive, 
scalable 
screening, 
actionable for 
preclinical risk 
assessment 

[36] 

Jacobson 
et al. 
(2022) 

Anxiety/ 

Behavioral 
Dysregulation 

Wearable Sensors Attention 
Maps 

Highlighted 
sleep 
restlessness as a 
predictor of 
anxiety 

Facilitated 
continuous 
monitoring, 
personalized 
intervention 
timing 

[104] 
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4.2.1. XAI in ASD Diagnosis Using fMRI or EEG 

 

Figure 2 Class activation map highlighting brain regions critical for ASD classification in fMRI data, including the 
superior temporal sulcus and prefrontal cortex. Adapted from Heinsfeld et al. [24] with permission. Copyright, 

Elsevier 2018 

Autism spectrum disorder (ASD) presents unique challenges in diagnosis due to its heterogeneous manifestations and 
the absence of definitive biological markers. Recent efforts have focused on leveraging functional magnetic resonance 
imaging (fMRI) and electroencephalography (EEG) data within deep learning frameworks to identify neural signatures 
of ASD [95,96]. However, the opaque nature of many of these models has limited their clinical acceptance. To address 
this, researchers have increasingly incorporated XAI techniques into ASD classification workflows. For example, Lin et 
al. [97] applied a convolutional neural network (CNN) to resting-state fMRI data and used Grad-CAM (Gradient-
weighted Class Activation Mapping) to visualize the regions of interest that influenced the model’s predictions. Their 
analysis revealed that altered connectivity in the posterior cingulate cortex and medial prefrontal cortex were 
significant contributors to ASD classification—insights that aligned with prior neurobiological research on ASD-related 
network disruptions. Class activation maps, such as Grad-CAM, enable clinicians to visualize the neural underpinnings 
of AI-driven ASD diagnoses. Figure 2 presents a class activation map overlaid on an fMRI scan, highlighting regions like 
the superior temporal sulcus and prefrontal cortex that drive ASD classification. Such interpretable visualizations 
enhance the clinical utility of AI by aligning predictions with neurobiological evidence.  

Similarly, EEG-based models have employed SHAP (SHapley Additive exPlanations) values to highlight the most 
informative frequency bands and channels. In a study by Rogala et al. [98], interpretable deep learning models were 
trained on EEG recordings from toddlers with suspected ASD. SHAP analysis revealed that abnormalities in alpha and 
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theta rhythms, particularly in the frontal and temporal lobes, were pivotal for ASD discrimination. These findings not 
only validated known electrophysiological differences in ASD but also helped clinicians understand the neural dynamics 
captured by the model. These case studies illustrate how XAI enables the alignment of computational inferences with 
neurobiological knowledge, enhancing the trustworthiness and interpretability of AI-driven ASD diagnostic tools. 

4.2.2. Interpretable AI for ADHD Symptom Clustering 

 

Figure 3 SHAP summary plot illustrating the contribution of EEG features to ADHD classification, highlighting alpha 
and theta band power as key predictors. Adapted from Khare and Acharya [124] with permission.Copyright, Elsevier 

2023. 

In contrast to ASD, attention-deficit/hyperactivity disorder (ADHD) is often diagnosed based on behavioral checklists 
and clinician observations, which introduces subjectivity and inter-rater variability [99]. To mitigate these issues, 
machine learning approaches are being employed to detect data-driven symptom clusters. Yet, the black-box nature of 
many clustering and classification algorithms remains a barrier to clinical adoption. 

Recent studies have utilized interpretable machine learning frameworks to deconstruct ADHD symptoms into coherent 
subtypes with clear explanatory factors. For instance, Arnett et al. [100] used hierarchical clustering on 
neuropsychological test scores and incorporated decision tree algorithms to elucidate how features like impulsivity, 
response inhibition, and sustained attention differentiated subgroups. The resulting tree structures allowed clinicians 
to trace back the classification logic, thereby offering interpretable symptom groupings that could inform individualized 
treatment strategies. In another example, attention-based deep learning models were applied to fMRI data from 
children with ADHD. Researchers employed attention maps to highlight regions of the brain that contributed most to 
symptom categorization [101]. According to the findings of Agoalikum et al. [102], the dorsolateral prefrontal cortex 
and anterior cingulate cortex showed elevated attention weights when predicting impulsive versus inattentive 
symptom clusters. These results were presented in a visual format that clinicians could readily interpret, aligning well 
with existing neurological models of ADHD. By offering transparent logic and neurobiologically grounded 
interpretations, XAI is aiding the redefinition of ADHD not just as a unitary diagnosis but as a spectrum with distinct, 
explainable subtypes. To illustrate the practical utility of XAI in ADHD diagnostics, consider the application of SHAP to 
EEG-based classification models. Figure 3 presents a SHAP summary plot, which quantifies the impact of EEG features, 
such as alpha and theta band power, on the model’s prediction of ADHD. This visualization not only highlights key 
neurophysiological markers but also enhances clinician trust by providing a transparent rationale for diagnostic 
decisions. 

4.2.3. Behavioral Data Analysis in Children Using Interpretable Decision Trees or Attention-Based Models 

Behavioral data—ranging from motor movement patterns to social interaction cues—represent a valuable, non-
invasive source of information for early detection of neurodevelopmental disorders [103]. However, these data are 
often high-dimensional and temporally complex, making traditional statistical approaches inadequate. Interpretable AI 
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models have emerged as promising tools to extract meaningful patterns while retaining transparency. A compelling 
application is the use of decision tree classifiers to analyze video-based behavioral data from preschool-aged children. 
In a landmark study by Perochon et al. [36], features such as gaze direction, gesture frequency, and joint attention 
episodes were encoded into a structured dataset. A CART (Classification and Regression Trees) algorithm was then 
trained to distinguish children at risk for ASD. The model's branching structure revealed that failure to respond to name 
calls and reduced gesture use were the most discriminative features—findings that were both interpretable and 
clinically actionable. In parallel, attention-based transformers have been applied to longitudinal behavioral datasets. In 
one recent study, Jacobson et al. [104] developed a model that processed wearable sensor data capturing motor activity 
and sleep patterns. The attention mechanism highlighted temporal sequences—such as prolonged restlessness during 
sleep—that contributed to anxiety or behavioral dysregulation diagnoses. These attention scores were visualized as 
heat maps, offering an intuitive explanation for clinicians and caregivers. These applications show how XAI can 
transform raw behavioral data into interpretable diagnostic cues, thereby empowering early intervention strategies 
while upholding transparency and accountability. 

4.3. Personalizing Diagnostic Pathways 

Another transformative role of XAI lies in its capacity to support personalized diagnostic pathways for individuals with 
neurodevelopmental conditions. Neurodevelopmental disorders are notoriously heterogeneous, often overlapping in 
symptomology and manifesting along diverse developmental trajectories [105]. Traditional diagnostic systems, though 
standardized, struggle to account for such individual variation. AI models trained on multimodal data—such as 
genomics, neuroimaging, and behavioral assessments—have demonstrated an ability to capture this heterogeneity 
[105,106]. However, XAI techniques are what make this granularity accessible and actionable for clinicians. For 
instance, in the study by Perochon et al. [36], SHAP was used to parse individualized diagnostic predictions for children 
undergoing ASD screening. The system highlighted specific behavioral indicators—such as joint attention deficits or 
speech delays—that were particularly influential in each child’s risk score, allowing clinicians to tailor follow-up 
assessments accordingly. Rather than offering a one-size-fits-all classification, the XAI-enhanced system provided a 
transparent, patient-specific reasoning path, empowering a more nuanced and targeted diagnostic process [107]. This 
capability is particularly beneficial for children who fall into diagnostic “gray zones,” where traditional criteria may not 
be fully met, but early intervention could still yield significant benefits. 

Moreover, explainability supports shared decision-making between clinicians, caregivers, and patients. By clearly 
communicating the basis of a model’s judgment, XAI fosters collaborative discussions and helps manage expectations. 
Parents, in particular, are often more receptive to AI-generated assessments when accompanied by understandable 
rationales, thereby improving compliance with recommended interventions and follow-up care [108]. As personalized 
medicine continues to evolve, the ability of XAI to illuminate the unique constellation of features driving each diagnostic 
decision will be key to realizing precision psychiatry for neurodevelopmental disorders. 

5. Limitations and Current Challenges 

Explainable AI (XAI) represents a pivotal advance in neurodevelopmental disorder diagnostics, promising transparency 
and interpretability in otherwise opaque machine learning models [109]. Yet, despite significant progress, numerous 
intrinsic limitations and practical challenges constrain its current utility. These challenges arise from the unstable 
nature of explanation methods, fundamental compromises between accuracy and interpretability, and pervasive data 
constraints common in pediatric neuroscience research. Addressing these limitations is crucial to achieving robust, 
clinically trustworthy AI systems that can be meaningfully integrated into neurodevelopmental care. To provide a 
structured overview of the challenges facing XAI in NDD diagnostics, Table 4 summarizes the key limitations, their 
implications, and potential mitigation strategies. This table aims to guide researchers and clinicians in addressing these 
hurdles to enhance the reliability and adoption of XAI systems in clinical practice. 

Table 4 Limitations of XAI in Neurodevelopmental Disorder Diagnostics 

Limitation Description Implication Mitigation 
Strategies 

Key 
References 

Inconsistency in 
Explanation 
Reliability 

Variability in SHAP/LIME 
outputs due to input noise 
or preprocessing 
differences 

Undermines clinician 
trust, risks 
misinterpretation of 
feature importance 

Standardize metrics 
for explanation 
stability, incorporate 
clinician feedback 

[110], [111], 
[112] 
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Trade-off Between 
Accuracy and 
Interpretability 

Complex models (e.g., CNNs) 
are accurate but opaque; 
simpler models are less 
accurate 

Limits clinical adoption 
of high-performing 
models 

Develop hybrid 
models, use 
surrogate 
interpretable models 

[113], [114], 
[115] 

Dataset Biases Underrepresentation of 
diverse populations in 
pediatric datasets 

Models may perpetuate 
biases, reducing 
generalizability 

Use federated 
learning, synthetic 
data generation, and 
diverse cohort 
recruitment 

[117], [118], 
[120] 

Small Pediatric 
Cohort Sizes 

Limited sample sizes due to 
ethical and recruitment 
constraints 

Increases overfitting 
risk, reduces model 
robustness 

Implement transfer 
learning, data 
augmentation, and 
multi-site data 
pooling 

[117], [119] 

Privacy Concerns Sensitive pediatric data 
raises ethical and legal 
issues 

Limits data sharing, 
hinders large-scale 
studies 

Adopt federated 
learning, differential 
privacy techniques 

[120], [126] 

Lack of 
Standardized 
Metrics 

No consensus on evaluating 
explanation quality or 
clinical relevance 

Hinders comparison 
and validation of XAI 
methods 

Develop universal 
benchmarks, involve 
clinicians in 
validation 

[112] 

5.1. Inconsistency in Explanation Reliability 

The reliability of explanations generated by XAI techniques remains a profound concern, particularly given the high-
stakes environment of neurodevelopmental disorder diagnosis. Most XAI frameworks rely on post hoc methods, such 
as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations), which 
approximate feature importance through perturbations or local surrogate models [110]. However, research has 
demonstrated that these approximations can exhibit significant variability depending on minor fluctuations in input 
data or model parameters [110]. For instance, in neuroimaging-based diagnostics of autism spectrum disorder (ASD), 
minor noise or slight preprocessing differences in brain scans have been shown to shift feature attribution maps, 
altering the interpretation of which brain regions contribute most to classification decisions [111]. This instability raises 
critical questions about the fidelity of such explanations and their alignment with actual neural correlates of disease 
pathology. Moreover, XAI methods sometimes yield contradictory explanations for similar cases or identical 
predictions, undermining confidence in their use as decision support tools. 

This inconsistency is compounded by a lack of consensus on standard metrics for evaluating explanation reliability and 
clinical relevance. While some studies advocate for stability metrics, others emphasize human-centered validation 
through clinician feedback [112]. However, the absence of universally accepted benchmarks hinders progress, leaving 
it unclear which XAI approaches provide explanations that truly reflect meaningful and actionable insights. In clinical 
contexts where decisions may impact therapeutic interventions or prognostic counseling, such uncertainty can diminish 
the willingness of practitioners to rely on AI-supported diagnoses [112]. 

5.2. Trade-off Between Accuracy and Interpretability 

A central technical dilemma in XAI for neurodevelopmental disorders is the inherent trade-off between model accuracy 
and interpretability. State-of-the-art diagnostic models often employ deep learning architectures like convolutional 
neural networks (CNNs) or graph neural networks (GNNs) that excel at capturing complex, nonlinear relationships in 
heterogeneous neurodevelopmental data, such as functional MRI, EEG, and behavioral assessments [113]. These models 
frequently outperform simpler, interpretable algorithms but do so at the cost of becoming “black boxes” whose internal 
decision logic is obscured. On the other hand, interpretable models such as logistic regression or decision trees offer 
clear, human-understandable decision boundaries but typically lack the nuanced representational capacity to address 
the multidimensional heterogeneity of neurodevelopmental disorders [114]. This creates a practical tension: 
prioritizing interpretability risks missing subtle but clinically relevant patterns, while maximizing predictive power 
sacrifices transparency and, consequently, clinician trust and regulatory approval. 



International Journal of Biological and Pharmaceutical Sciences Archive, 2025, 10(01), 031-057 

48 

Efforts to reconcile this trade-off include hybrid approaches, such as integrating inherently interpretable modules 
within deep networks or designing surrogate models that approximate complex models’ behavior in an interpretable 
manner. For example, Li et al. [115] developed interpretable graph convolutional models for brain connectivity data in 
ASD diagnosis, balancing complexity and clarity. Nevertheless, these approaches remain in early stages and are often 
limited to specific data modalities or constrained datasets. Moreover, it remains unclear how well surrogate 
explanations generalize across diverse clinical scenarios. This trade-off also intersects with ethical and legal 
considerations. Regulatory agencies increasingly require explainability for AI-based medical devices, mandating a level 
of transparency that many high-performing models struggle to meet [116]. Thus, the challenge is not merely technical 
but also operational, requiring advances that deliver both rigorous performance and comprehensible explanations that 
clinicians and patients can trust. 

5.3. Dataset Biases and Overfitting in Small Pediatric Cohorts 

Data limitations present one of the most pervasive barriers to robust XAI applications in neurodevelopmental disorders. 
Pediatric neuroimaging and behavioral datasets typically suffer from small sample sizes due to recruitment difficulties, 
ethical constraints, and the low prevalence of many disorders. This scarcity increases the risk of overfitting, whereby AI 
models capture idiosyncratic noise or cohort-specific artifacts rather than generalized biomarkers [117]. 

Moreover, neurodevelopmental disorders display substantial demographic and phenotypic heterogeneity, including 
variations across age, sex, ethnicity, and socioeconomic background, which are frequently underrepresented or 
unevenly distributed in available datasets. For example, many prominent neuroimaging databases are predominantly 
composed of Western, Caucasian participants, limiting generalizability to global populations [118]. This biased data 
landscape leads to models—and consequently explanations—that reflect confounding variables rather than universal 
neurobiological features, potentially perpetuating disparities in diagnostic accuracy across subpopulations. 

Overfitting is further exacerbated by the high dimensionality of neurodevelopmental data, which often includes tens of 
thousands of features relative to relatively small cohort sizes. Without adequate regularization or data augmentation 
strategies, models tend to memorize training data, limiting external validity [119]. Such overfitting undermines the 
clinical reliability of both model predictions and their explanations, as spurious correlations are misinterpreted as 
meaningful markers. To address these challenges, emerging methodologies such as federated learning, transfer 
learning, and synthetic data generation have been proposed to leverage multi-institutional data while preserving 
patient privacy and increasing dataset diversity [120]. However, these approaches introduce complexities in ensuring 
that explanations remain valid and interpretable across heterogeneous data sources. Furthermore, careful scrutiny is 
required to detect and mitigate embedded biases that could adversely impact underrepresented groups. 

6. Future Directions 

As artificial intelligence systems continue to make inroads into clinical neuroscience, particularly in pediatric 
neurodevelopmental diagnostics, the need to balance model performance with interpretability becomes even more 
urgent. Explainable AI (XAI) is not just a supplementary feature but an essential component that ensures transparency, 
trust, and ethical alignment in clinical contexts. Emerging research suggests that the next wave of advancement in this 
field will be driven by integrative frameworks that combine explainability with real-world clinical usability, multisite 
data collaboration, and active involvement of human experts [121,122]. This section explores the most promising 
directions in the evolution of XAI: integration with digital biomarkers, federated explainable learning, and human-in-
the-loop designs. To chart the path forward for XAI in neurodevelopmental diagnostics, Table 5 outlines key future 
directions, their potential impact, and enabling technologies. This table highlights how emerging paradigms like digital 
biomarkers, federated learning, and human-in-the-loop systems can advance the field, ensuring ethical and effective 
deployment of AI in pediatric neuroscience. 

Table 5 Future Directions for XAI in Neurodevelopmental Disorder Diagnostics 

Future Direction Description Potential Impact Enabling 
Technologies 

Key References 

Integration with 
Digital Biomarkers 

Using XAI to interpret 
behavioral/physiological 
data from smartphones, 
wearables 

Scalable, non-
invasive early 
detection, 
personalized 
monitoring 

SHAP, LIME, 
attention-based 
models, wearable 
sensors 

[123], [124] 
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Federated 
Explainable 
Learning 

Decentralized model 
training with local 
explanations across 
institutions 

Improved 
generalizability, 
privacy-preserving 
multicenter studies 

Federated SHAP, 
differential privacy, 
blockchain for data 
integrity 

[125], [126] 

Human-in-the-Loop 
Models 

Incorporating clinician 
feedback into model 
training and explanation 
generation 

Enhanced model 
relevance, 
improved trust and 
clinical alignment 

Active learning, causal 
attention maps, co-
design frameworks 

[127], [128], 
[129] 

Multimodal Data 
Fusion 

Combining 
neuroimaging, 
behavioral, and genomic 
data with XAI 

Comprehensive 
diagnostic profiles, 
improved accuracy 

Transformers, late-
fusion models, cross-
modal attention 
mechanisms 

[106], [122] 

Real-time 
Monitoring Systems 

Continuous tracking of 
NDD symptoms using 
XAI-enhanced digital 
phenotyping 

Dynamic 
intervention timing, 
longitudinal 
tracking 

Time-series models, 
edge computing, real-
time SHAP 

[49], [104] 

Ethical and 
Regulatory 
Frameworks 

Developing standards for 
XAI transparency and 
fairness 

Ensures safe, 
equitable 
deployment, 
regulatory 
compliance 

GDPR-compliant 
algorithms, 
standardized 
explanation metrics 

[73], [116] 

 

6.1. Integrating XAI with Digital Biomarkers 

The fusion of XAI with digital biomarkers is poised to revolutionize early detection and individualized monitoring in 
pediatric neuroscience. Digital biomarkers—quantifiable physiological and behavioral data collected via digital 
devices—have shown substantial promise for tracking developmental milestones and deviations [123]. However, the 
integration of such high-dimensional, temporally varying data into AI models demands more than just predictive 
accuracy; it requires interpretability to be clinically viable. Recent studies have demonstrated the utility of XAI in 
identifying behavioral signatures from digital phenotyping tools such as smartphone usage, eye-tracking, and wearable 
sensors. For instance, Khare et al. [124] developed an interpretable AI system that leverages touchscreen interaction 
patterns to flag early signs of attention-deficit/hyperactivity disorder (ADHD). The model used SHAP (SHapley Additive 
exPlanations) to highlight which specific digital biomarkers—like reaction time variability or motor consistency—were 
most influential in the prediction, thereby providing actionable insights for clinicians. 

Furthermore, explainability plays a critical role in establishing trust when AI inferences are based on novel biomarkers 
that have not yet been validated in traditional clinical settings. Clinicians require clear mappings between AI-driven 
outputs and established pathophysiological frameworks [122]. XAI bridges this gap by visually and semantically 
aligning algorithmic findings with known clinical markers, such as EEG signal entropy or vocal prosody patterns in 
autism spectrum disorder. Going forward, robust frameworks are needed to standardize the extraction and 
interpretation of digital biomarkers across populations and devices. Integration with XAI will not only enhance model 
transparency but also facilitate regulatory approval and cross-institutional adoption. 

6.2. Federated Explainable Learning for Multicenter Studies 

One of the central challenges in pediatric neurodevelopmental research is the scarcity of large, diverse datasets due to 
privacy constraints and ethical regulations. Federated learning (FL), which enables decentralized model training across 
multiple institutions without direct data sharing, has emerged as a solution. However, integrating explainability into FL 
frameworks—termed Federated Explainable Learning (FEL)—is a relatively new but transformative direction. 

In FEL architectures, each node (institution) computes local explanations using methods like LIME or SHAP and then 
aggregates them along with the model updates. A notable example is the work by Wang et al. [125], who developed a 
federated version of SHAP to enable privacy-preserving feature attribution across five hospitals analyzing 
neuroimaging data for autism classification. This allowed for consistent interpretability of the model's decisions across 
institutions without exposing patient-level data. Nevertheless, several challenges remain. Explanation consistency 
across non-identically distributed datasets is a pressing issue, as variations in imaging protocols or behavioral 
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assessments can yield diverging model rationales. Moreover, communicating the reasoning of decentralized models to 
clinicians demands uniform standards in how explanations are generated, validated, and visualized [126]. 

The integration of FEL into multicenter neurodevelopmental studies promises not only improved model generalization 
through broader data access but also the democratization of interpretability tools, ensuring that all participating 
clinicians understand and trust the AI system’s rationale regardless of their institutional affiliation. 

6.3. Human-in-the-Loop Models and Co-Design with Clinicians 

A truly transformative vision for AI in pediatric neuroscience is one where clinicians are not passive recipients of model 
outputs but active participants in the development and refinement of AI tools. Human-in-the-loop (HITL) frameworks 
operationalize this vision by embedding expert feedback directly into the model training or post-prediction phase. This 
approach not only improves model relevance but also enhances interpretability, as clinicians' domain knowledge guides 
feature selection and outcome prioritization. For example, the co-design approach used in the CLIN-XAI project (Amann 
et al., [127]) involved pediatric neurologists in iterative model refinement, using their feedback to adjust both the 
features included in the model and the way explanations were presented. Their input led to the adoption of causal 
attention maps over traditional saliency plots, thereby aligning the AI's reasoning process with clinicians' diagnostic 
heuristics.  

Moreover, HITL systems can enable active learning paradigms where models identify uncertain predictions and defer 
to clinicians for clarification. These interactions not only improve performance in edge cases but also generate high-
value labeled data that further enhance interpretability models over time [128]. As pediatric datasets often suffer from 
limited volume and diversity, incorporating clinician feedback into every stage—from feature engineering to 
explanation generation—ensures that AI systems remain both precise and clinically aligned [129,130]. The future of 
explainable AI in neuroscience lies not just in smarter algorithms, but in deeper collaborations between machine 
learning experts and clinical practitioners. 

7. Conclusion 

The intersection of artificial intelligence and neurodevelopmental disorder (NDD) diagnosis represents one of the most 
transformative frontiers in modern neuroscience. As this review has established, the burden of NDDs—particularly 
autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD)—remains alarmingly high, with 
early detection proving pivotal for long-term functional outcomes. The emergence of AI, and more specifically 
explainable AI (XAI), offers a new paradigm for both identifying and understanding these conditions with greater 
precision, timeliness, and clinical relevance. However, while AI models have begun to outperform traditional diagnostic 
tools in sensitivity and speed, the opaque nature of many deep learning algorithms has posed a significant barrier to 
clinical adoption. The quest for transparency and accountability has thus positioned XAI as a vital component in the 
responsible deployment of AI in pediatric neuropsychiatry. 

Throughout this review, we explored how XAI techniques—ranging from SHAP and LIME to Grad-CAM and attention 
mechanisms—can be applied to neuroimaging, behavioral, and EEG data to generate clinically interpretable insights. 
These tools have not only improved trust among clinicians but have also uncovered novel biological and behavioral 
patterns previously obscured by statistical noise or analytical limitations. Case studies have demonstrated how XAI 
methods can elucidate the neurofunctional correlates of ASD using fMRI, disentangle ADHD symptom clusters through 
neuropsychological features, and enhance the interpretability of child behavior analytics via decision trees and 
attention-based models. These examples underscore the growing maturity and impact of XAI in clinical contexts, where 
transparency, reproducibility, and human interpretability are non-negotiable. 

Nonetheless, significant limitations persist. This review has outlined how inconsistencies in explanation reliability, 
trade-offs between model accuracy and interpretability, and the prevalence of dataset biases—particularly in small, 
heterogeneous pediatric cohorts—continue to challenge the robustness of current XAI models. Furthermore, ethical 
questions surrounding data privacy, algorithmic accountability, and clinician oversight remain unresolved. Future 
directions must therefore prioritize integrated solutions, including the development of federated explainable learning 
systems, co-designed human-in-the-loop models, and synergy with digital biomarkers to enable continuous, real-time, 
and ethically grounded monitoring of neurodevelopment. Only by navigating these challenges with interdisciplinary 
rigor can the neuroscience community fully realize the promise of XAI: a future where powerful AI tools not only 
diagnose, but also explain, justify, and humanize clinical decision-making for some of the most vulnerable populations. 
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